
1
August 2005Richard P. Mount, SLAC

HEC-IWG FS&I/O R&D
Workshop
Randy Melen

SLAC/SCCS

August 16, 2005

2
August 2005Richard P. Mount, SLAC

• Our environment
– ~ 2PB of active data for BaBar experiment, but

growing still

– Data analysis (mining) done with random reads of
small blocks (2KB down to 100 bytes)

– A researcher typically has several hundred
simultaneous analysis streams (in batch)

– And several hundred concurrent researchers are
active

3
August 2005Richard P. Mount, SLAC

• Our problem
– So several thousand simultaneous streams

of random (unpredictable, readahead
doesn’t help) read requests to disk

– Latency from client request to receiving
data is 7000 to 12000 microseconds

– Data space is probably 10 to 32TB right
now, probably 256TB within a few years

4
August 2005Richard P. Mount, SLAC

• We need latencies between disk and DDR
memory latencies

• So why not just buy a very big SMP from the
usual vendors with massive memory?

• Because we also need a price point between
disk and DDR memory

• We do not need cache coherency for our
read-mostly requirement

5
August 2005Richard P. Mount, SLAC

• To begin exploring this area, we have built a
“toy” 64-host 1TB memory cluster using
commodity hardware with DDR memory

• DDR memory is still too expensive to scale up
to 10 to 32TB that is needed for a real test

• Using xrootd from the HEP world to test
usefulness

6
August 2005Richard P. Mount, SLAC

• Stress tests done with no client computation,
just data access

• Measured latency drops to about 200
microseconds

7
August 2005Richard P. Mount, SLAC

SLAC Scientific Computing Drivers
• BaBar (data-taking ends December 2008)

– The world’s most data-driven experiment
– Data analysis challenges until the end of the decade

• KIPAC
– From cosmological modeling to petabyte data analysis

• Photon Science at SSRL and LCLS
– Ultrafast Science, modeling and data analysis

• Accelerator Science
– Modeling electromagnetic structures (PDE solvers in a demanding application)

• The Broader US HEP Program (aka LHC)
– Contributes to the orientation of SLAC Scientific Computing R&D

8
August 2005Richard P. Mount, SLAC

Future Work: Latency Reduction
(All require work with vendors)

• Operating system and TCP stack
enhancements

• TCP stack bypass
– RDMA

– MPI-optimized service

• Network card driver optimization

• TOE (not good if bandwidth-focused)

9
August 2005Richard P. Mount, SLAC

Use of Prototype for SLAC Science

• BaBar
– Host part of the (~30 TB) microDST data
– Access data via “pointer skims”
– Both normal production use and intensified tests

with ‘real’ access patterns an super-real access
rates.

• GLAST
– Will require a ~2TB intensely accessed database.

Have asked to test concepts on the PetaCache
Prototype

• LSST Database Prototyping
– Proposed tests using the PetaCache prototype

10
August 2005Richard P. Mount, SLAC

Development Machine

• Ideas for Storage-Class Memory

• Likely configuration

11
August 2005Richard P. Mount, SLAC

Storage-Class Memory

• New technologies coming to market in
the next 3 – 10 years (Jai Menon –
IBM)

• Current not-quite-crazy example is flash
memory

12
August 2005Richard P. Mount, SLAC

Flash Memory

13
August 2005Richard P. Mount, SLAC

Development Machine
Plans

Switch (10 Gigabit ports)

Data-Servers 80 Nodes, each
8 Opteron CPU, 128 GB memory

Up to 10TB total Memory
Solaris/Linux

Cisco Switch Fabric

Clients up to 2000 Nodes, each
2 CPU, 2 GB memory

Linux

Data-Servers 30 Nodes, each
2 Opteron CPU, 1TB Flash memory

~ 30TB total Memory
Solaris/Linux

PetaCache

SLAC-BaBar
System

14
August 2005Richard P. Mount, SLAC

Summary
• Data-intensive science increasingly requires low-latency access

to terabytes or petabytes
• Memory is one key:

– Commodity DRAM today (increasing total cost by ~2x)
– Storage-class memory (whatever that will be) in the future

• Revolutions in scientific data analysis will be another key
– Current HEP approaches to data analysis assume that random

access is prohibitively expensive
– As a result, permitting random access brings much-less-than-

revolutionary immediate benefit
• Use the impressive motive force of a major HEP collaboration

with huge data-analysis needs to drive the development of
techniques for revolutionary exploitation of an above-threshold
machine.

15
August 2005Richard P. Mount, SLAC

PetaCache

Huge-Memory Architecture
for

Data-Intensive Science

Richard P. Mount
SLAC

August 16, 2005

16
August 2005Richard P. Mount, SLAC

PetaCache Goals

• The PetaCache architecture aims at
revolutionizing the query and analysis of
scientific databases with complex structure.
– Generally this applies to feature databases

(terabytes–petabytes) rather than bulk data
(petabytes–exabytes)

• The original motivation comes from HEP
– Sparse (~random) access to tens of terabytes

today, petabytes tomorrow
– Access by thousands of processors today, tens of

thousands tomorrow

17
August 2005Richard P. Mount, SLAC

Prototype (Development) Machine
Design Goals

• Attractive to scientists
– Big enough data-cache capacity to promise revolutionary

benefits
– 1000 or more processors

• Processor to (any) data-cache memory latency < 100
µs

• Aggregate bandwidth to data-cache memory > 10
times that to a similar sized disk cache

• Data-cache memory should be 3% to 10% of the
working set (approximately 10 to 30 terabytes for
BaBar)

• Cost effective, but acceptably reliable
– Constructed from carefully selected commodity components

18
August 2005Richard P. Mount, SLAC

• Intel/AMD server mainboards with 4 or more ECC
dimm slots per processor

• 2 Gbyte dimms ($550 each)
• 4 Gbyte dimms ($7,000 each) too expensive this year
• 64-bit operating system and processor

– Favors Solaris and AMD Opteron

• Large (500+ port) switch fabric
– Large Ethernet switches are most cost-effective

• Use of ($10M+) BaBar disk/tape infrastructure,
augmented for any non-BaBar use

Prototype (Development) Machine
Design Choices

19
August 2005Richard P. Mount, SLAC

Prototype Machine
(Operational)

Cisco Switch

Data-Servers 64-128 Nodes, each
Sun V20z, 2 Opteron CPU, 16 GB memory

Up to 2TB total Memory
Solaris or Linux (mix and match)

Cisco Switches

Clients
up to 2000 Nodes, each

2 CPU, 2 GB memory
Linux

PetaCache
MICS + HEP-

BaBar Funding

Existing HEP-Funded
BaBar Systems

20
August 2005Richard P. Mount, SLAC

Client Client Client Client Client Client

Disk
Server

Disk
Server

Disk
Server

Disk
Server

Disk
Server

Disk
Server

Tape
Server

Tape
Server

Tape
Server

Tape
Server

Tape
Server

SLAC-BaBar Computing Fabric

IP Network
(Cisco)

IP Network
(Cisco)

120 dual/quad CPU
Sun/Solaris
~400 TB Sun
FibreChannel RAID
arrays

1700 dual CPU Linux
400 single CPU
Sun/Solaris

25 dual CPU
Sun/Solaris
40 STK 9940B
6 STK 9840A
6 STK Powderhorn
over 1 PB of data

HEP-specific ROOT software (Xrootd) +
Objectivity/DB object database

HPSS + SLAC enhancements to
ROOT and Objectivity server code

21
August 2005Richard P. Mount, SLAC

Object-Serving Software

• Xrootd/olbd (Andy Hanushevsky/SLAC)
– Optimized for read-only access
– File-access paradigm (filename, offset, bytecount)
– Make 1000s of servers transparent to user code
– Load balancing
– Self-organizing
– Automatic staging from tape
– Failure recovery

• Allows BaBar to start getting benefit from a new data-access
architecture within months without changes to user code

• The application can ignore the hundreds of separate address
spaces in the data-cache memory

22
August 2005Richard P. Mount, SLAC

Making the Server Perform

• Solve onlyonly the problem at hand
– Avoids high overhead but unused features
–– xrootdxrootd is only a DData AAccess SSystem

– It may look like a file system but it is notnot
one
• Avoids high overhead consistency semantics

• Not needed in write once read many
applications

This is common sense that is hard to followThis is common sense that is hard to follow

23
August 2005Richard P. Mount, SLAC

Basic Cluster Architecture
• Software cross bar switch

– Allows point-to-point connections
• Client and data server

– I/O performance not compromised
• Assuming switch overhead can be amortized

• Scale interconnections by stacking
switches
– Virtually unlimited connection points

• Switch overhead must be very low

24
August 2005Richard P. Mount, SLAC

Single Level Switch

ClientClient RedirectorRedirector
(Head Node)

Data ServersData Servers

open file X
AA

BB

CC

go to C

open file X

Who has file X?

I have

Cluster
Client sees all servers as Client sees all servers as xrootdxrootd data serversdata servers

2nd open X

go to C

RedirectorsRedirectors
Cache fileCache file
locationlocation

25
August 2005Richard P. Mount, SLAC

Two Level Switch

ClientClient

RedirectorRedirector
(Head Node)

Data ServersData Serversopen file X
AA

BB

CC

go to Copen file X

Who has file
 X?

I have

Cluster

Client sees all servers as Client sees all servers as xrootdxrootd data serversdata servers

SupervisorSupervisor
(sub(sub--redirector)redirector)

Who has file
 X? DD

EE

FF

I havego to F

open file X

I have

26
August 2005Richard P. Mount, SLAC

Example: SLAC Configuration

client machinesclient machines

kan01 kan02 kan03 kan04 kanxx

bbr-olb03 bbr-olb04 kanolb-a

Hidden Details

27
August 2005Richard P. Mount, SLAC

Making Clusters Efficient
• Cell size, structure, & search protocol are critical

– Cell Size is 64
• Limits direct inter-chatter to 64 entities
• Compresses incoming information by up to a factor of 64
• Can use very efficient 64-bit logical operations

– Hierarchical structures usually most efficient
• Cells arranged in a B-Tree (i.e., B64-Tree)
• Scales 64h (where h is the tree height)

– Client needs h-1 hops to find one of 64h servers (2 hops for 262,144 servers)

– Number of responses is bounded at each level of the tree

– Search is a directed broadcast query/rarely respond protocol
• Provably best scheme if less than 50% of servers have the wanted file

– Generally true if number of files >> cluster capacity
– Cluster protocol becomes more efficient as it grows

28
August 2005Richard P. Mount, SLAC

Cluster Scale Management
• Massive clusters must be self-managing

– Scales 64n where n is height of tree
• Scales very quickly (642 = 4096, 643 = 262,144)

• Well beyond direct human management
capabilities

– Therefore clusters self-organize
• Uses a minimal spanning tree algorithm

– 280 nodes self-cluster in about 7 seconds

– 890 nodes self-cluster in about 56 seconds

• Most overhead is in wait time to prevent
thrashing

29
August 2005Richard P. Mount, SLAC

Latency (1)
Ideal

Client Application

Memory

30
August 2005Richard P. Mount, SLAC

Latency (2)
Current reality for Disk-based Servers

Client Application

Data-Server-Client

OS

TCP Stack

NIC

Data Server

OS

TCP Stack

NIC

Network
Switches

OS

File System

Disk

31
August 2005Richard P. Mount, SLAC

Latency (3)
Practical Goal for Prototype

Client Application

Data-Server-Client

OS

TCP Stack

NIC

Data Server

OS

TCP Stack

NIC

Network
Switches

OS

File System

Disk

Memory

32
August 2005Richard P. Mount, SLAC

Latency (microseconds) versus data
retrieved (bytes)

0.00

50.00

100.00

150.00

200.00

250.00

10
0

60
0

11
00

16
00

21
00

26
00

31
00

36
00

41
00

46
00

51
00

56
00

61
00

66
00

71
00

76
00

81
00

Server xrootd overhead
Server xrootd CPU
Client xroot overhead
Client xroot CPU
TCP stack, NIC, switching
Min transmission time

33
August 2005Richard P. Mount, SLAC

Throughput Measurements

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1 5 10 15 20 25 30 35 40 45 50

Number of Clients for One Server

Tr
an

sa
ct

io
ns

 p
er

 S
ec

on
d

Linux Client - Solaris Server
Linux Client - Linux Server
Linux Client - Solaris Server bge

22 processor
microseconds per
transaction

34
August 2005Richard P. Mount, SLAC

xrootd self-organiation

x = 1.9

x = 2.3

86 (first start to last finish)

56 (last start to last finish)

890

7280

Time =
anx

Time required to self-
organize (seconds)

Number of
xrootd/olbd
servers (n)

